City of Cambridge, Water Department 250 Fresh Pond Parkway, Cambridge, MA 02138 Monthly Water Quantity and Quality Report December 2009 Edward Dowling, Laboratory Manager Water Operations > SOURCE of CAMBRIDGE WATER SUPPLY edowling@cambridgema.gov (617) 349-4780 Krystyna McInally Water Quality Supervisor -Treatment Water Operations kmcinally@cambridgema.gov David Kaplan Watershed Technician Watershed Division dkaplan@cambridgema.gov James Rita Production Manager Water Operations <u>irita@cambridgema.gov</u> # **Water Supply** The Cambridge water supply system consists of four reservoirs and their tributaries located in Lexington, Waltham, Lincoln, Weston, Cambridge and Belmont. The two primary water sources, Hobbs Brook Reservoir and Stony Brook Reservoir, flow to the terminal reservoir, Fresh Pond, located in Cambridge, via the Stony Brook conduit. The water is then purified and pumped to Payson Park Reservoir, two 16 million gallon drinking water clearwells located in Belmont at a maximum elevation of 181 feet, where it is further disinfected with chloramines and distributed to the city by gravity. The largest of the reservoirs, Hobbs Brook, reaches its maximum elevation at 181.3 feet above sea level, its maximum depth at approximately 25 feet, and at full capacity, holds approximately 2.5 billion gallons of water. Stony Brook Reservoir reaches its maximum elevation at 80.6 feet above sea level, its deepest point is at approximately 35 feet, and at full capacity, it contains roughly 455 million gallons of water-revised 2009. Fresh Pond Reservoir reaches its maximum elevation at 17 feet above sea level, its maximum depth at 50 feet, and at full capacity, holds roughly 1.5 billion gallons. While the Watershed's primary storage reservoir is Hobbs Brook, in the winter and spring months it is largely unused. Due to its vast size, and relatively small watershed, Hobbs Brook is slow to fill up. This winter hiatus is necessary for Hobbs to regain the water it uses in the summer months. Conversely, Stony Brook is relatively small compared to its large watershed and fills much faster than Hobbs Brook. Due to this condition, Stony Brook is used in place of Hobbs during the winter months. During times of high water flow, the Cambridge Watershed, via Stony Brook, overflows its surplus water into the Charles River. Current Conditions: 01/12/10 The reservoir system is at 87% capacity. The reservoir system is currently at 104% of historical capacity for this time of year. Hobbs Brook Reservoir current storage volume is 2,278 Million Gallons (MG) or 84% and filling, Stony Brook Reservoir has a current storage volume is 387 MG or 83% and Fresh Pond Reservoirs current storage volume is 1,433 MG or 92%. The average daily demand is 11.0 Million Gallons per Day (MGD). Days of supply remaining without recharge: 279 or 9.3 months. # Reservoir storage levels # **Reservoir Water Specific Conductance** #### **Water Demand** -Cambridge City Population: 101,355 Million Gallons (MG) - Gallons per Minute (GPM) Maximum instantaneous demand: 12/03/09 at 07:56 am: 11,180 GPM Minimum instantaneous demand: 12/05/09 at 03:48 am: 3,555 GPM Average daily water demand for 2009: 13.00 MG Average daily water demand 2008: 13.33 MG Average daily water demand December 2009: 11.00 MG Average daily water demand December 2008: 11.57 MG Monthly Water Demand December 2009: 341 MG Monthly Water Demand December 2008: 359MG Total water produced for 2009: 4,748 MG Total water produced for 2008: 4,878 MG Difference: -130MG # Monthly Plant Production # **Source Water Quality** #### **Hobbs Brook Reservoir at intake** Average: 11 CFU/100mL E-Coli Bacteria-TOC Average: 3.9 mg/L UV 254 Average: 0.120 A/cm Aluminum: Average: 0.024 mg/L Sodium: Average: 102 mg/L Chloride Average: 183 mg/L Bromide: Average: 0.102 mg/L Turbidity-Average: 0.67 NTU Conductivity-Average: 645 umhos/cm pH-Average: 7.00 #### Stony Brook Reservoir at intake E-Coli Bacteria-Average: 37 CFU/100mL TOC Average: 6.0 mg/L UV 254 Average: 0.261 A/cm Aluminum Average: 0.097mg/L Average: 74 mg/L Sodium Chloride Average: 152 mg/L **Bromide** Average: 0.061mg/L **Turbidity** Average: 1.9 NTU Conductivity-Average: 473 umhos/cm pH-Average: 6.80 ### Fresh Pond Reservoir at intake Average: 99 CFU/100mL E-Coli Bacteria-TOC Average: 3.96 mg/L UV254 Average: 0.130 A/cm SUVA Average: 3.28 Sodium Average: 64 mg/L Chloride Average: 132 mg/L **Bromide** Average: 0.079 mg/L Alkalinity (as CaCO3) Average: 30.5 mg/L Aluminum Average: 0.033 mg/L Turbidity-Average: 0.6 NTU Conductivity-Average: 490umhos/cm *p*H- Average: 7.19 Temperature: Average: 8.5°C ## Cryptosporidium and Giardia As part of the Long Term 2 Enhanced Surface Water Treatment Rule monitoring Cambridge has collected 24 samples for *Cryptosporidium* and *Giardia* since February 2006. The monitoring is population based. Hence systems with populations >100,000 must collect 24 raw water samples over a two year period. The *Cryptosporidium* results are the basis for *bin assignment* on the Running Annual Average (RAA). Bin Classification: Systems with an RAA *Crypto* concentrations of <0.75 (Oo) cysts per liter are placed in Bin 1 for which no additional treatment is required. To date none of the samples have detected any *Cryptosporidium* and one sample out of 24 detected *Giardia* at 0.1 cysts/L. # **Endocrine Disruptors, Pharmaceuticals, Personal Care Products** In response to the concern about the possibility of these unregulated compounds in municipal tap water, the Water Department tested the tap water in March 2008 for 86 compounds and did not detect any in the tap water. Follow up sampling in September 2008 detected the following compounds in the tap water: Acetaminophen at 0.019 micrograms per liter (ug/L) and Nicotine at 0.007 ug/L, Monitoring will continue twice a year. March 2009: Cotinine at 0.001 ug/L. September 2009: No Detects ### **Turbidity** Turbidity is a measure of suspended and colloidal particles including clay, silt, and inorganic matter, algae, and microorganisms. Turbidity is determined by a technique involving the measurement of light scattered at right angles in a water sample. The more of the source light that is scattered the more (the higher) the turbidity. The units of measurement for turbidity are Nephelometric Turbidity Units (NTU's). # Finished Water Quality # **Turbidity** The Surface Water Treatment Rule (SWTR) establishes performance goals for finished water turbidity. The pretreatment turbidity goal is to be less than 1 NTU. A conventional filtration plant is considered in compliance if the filtered water turbidity is less than 0.3 NTU in 95 % of its samples. Turbidity is measured through the treatment process as a measure of treatment effectiveness. In the watershed and in the reservoirs turbidity may indicate the presence of silt from storm events or the presence of algae. In the pretreatment e.g. rapid mix, flocculation, and Dissolved Air Flotation (DAF)) portion of the plant turbidity is used indicator of process efficiency. Turbidity of the filter effluent is used both as a process efficiency and regulatory indicator of performance. The effects of turbidity depend on the nature of the matter that causes the turbidity. High levels of particulate matter may have higher chlorine demand or may protect bacteria from the disinfectant effects of ozone and chlorine, thereby interfering with the disinfectant residual throughout the distribution system. The turbidity through the cycle of each filter run is an indicator of the overall effectiveness of the filter process. ### **Primary Disinfection - Ozone** The CWD provides disinfection to achieve the EPA requirement for 99.9% inactivation of Giardia cysts and 99.99% inactivation of viruses in drinking water. Instead of measuring or counting Giardia and viruses, compliance is determined by a system operational standard, the measurement of the disinfection process. EPA has established a set of criteria for each disinfectant (ozone, free chlorine, and chloramines). They are stated as CT values where C is concentration and T is time. The concentration C of the disinfectant in the water over time T yields a measure of the effectiveness of disinfection, CT. The required CT varies with the disinfectant type, water temperature, pH, and other factors. CWD measures CT in three places, intermediate ozone, free residual chlorine in the clearwell, and chloramines through the Payson Park Reservoir. The goal is to meet the minimum CT requirements with the intermediate ozone system at a concentration of 1.5 mg/L (milligram per liter) Ozone. The CT credited from the other two sources provides redundancy to the system. The following two graphs show the combined ozone and free chlorine CT. ### **Secondary Disinfection - Chloramines** Regulations require a minimum of a 0.2 mg/L concentration of disinfectant throughout the distribution system. The higher values reflect the operational need for disinfection with free chlorine after the biological filters. A 15% solution of Sodium Hypochlorite is added at a concentration of 3.5 mg/L at the entrance the clearwell. The typical chlorine demand is approximately 1 mg/L this leaves a free residual chlorine concentration of 2.5 mg/L available for disinfection in the clearwell. It is this concentration of chlorine that's mixed with ammonia to create the level of chloramines measured as total residual chlorine using the HACH DPD Method. # Chloramination The practice of adding ammonia to chlorinated water is called Chloramination. This process is recognized for taste and odor control to reduce the undesirable medicinal taste of chlorinated water. It was first used in Greenville, Tennessee in 1926. This process can contribute to taste and odor control problems if not properly controlled. The formation of di- and trichloramines species is minimized by controlling the chlorine and ammonia ratios (3 to 4:1). A 30 % solution of Ammonium Hydroxide is added at a concentration of 0.5 mg/L. CWD's target chlorine to ammonia ratio is 4.5:1 ## Distribution Chlorine Residual - mg/L #### Corrosion Control - pH adjustment The National Primary Drinking Water Regulations (NPDWR) - Lead and Copper Rule establishes limits to the amount of lead and copper that may be in drinking water at the consumers tap. The Action Level for Lead is 15 ug/L (micrograms per liter). CWD is in compliance with the 2008 round of reduced sampling. CWD's 90th percentile is 9 ug/L. The Action Level for Copper is 1300 ug/L. CWD's 90th percentile was 32ug/L. Cambridge meets the requirements by reducing corrosiveness of the water by adjusting the to pH 9 with a 50% solution of Sodium Hydroxide (as of 1/26/09) at a concentration of 22 mg/L. This combined with the natural occurring alkalinity, hardness and dissolved minerals in the water minimizes the leaching of lead and copper from service lines and home plumbing systems, the source of lead and copper at the consumer tap. The target for distribution system pH is 9.1. On 9/24/09 Finish Water pH Set point reduced to 8.8. The High Lift Pumps Seized due to Calcium Carbonate scaling. This scale forms when the water temperature is over 20°C. Lowering Caustic addition at this time reduces this scaling. ### **Fluoridation** The Massachusetts Department of Health mandates that Drinking Water Systems fluoridate for the prevention of dental cavities. CWD adds a solution of 23% Hydrofluocylicic acid at a concentration of 1.0 mg/L. CWD targets the concentration at 1.1 mg/L. The Fluoride addition was stopped to determine the length of time the fluoride remains in the system. Estimated maximum water age is 12 days # **Disinfection By-Products** The incidence of waterborne diseases has been greatly reduced since the widespread implementation of drinking water disinfection. While a measurable public health benefit has been achieved, other potential risks may have been introduced. The presence of chloroform and other trihalomethanes (THMs) in finished drinking water was first associated with the chlorination of drinking water in 1974. It was discovered that in, addition to killing microorganisms disinfectants react with organic and inorganic substances naturally present in the water to produce a variety of disinfection by-products (DBPs), which include THMs. The DBPs associated with chlorination are THMs, haloacetic acids, haloacetonitriles and halopicrins. Ozonation may result in bromate formation. Nitrosodimethylamine (NDMA) is a by product of chloramination. | Total Organ | ic Carbon | (TOC) Sur | vey | | | | | | | | | | | | |-----------------|-------------|------------|-----------------|--------------|-----------------|--------------------|----------------------------|--------------------|----------------------------|-------------|------------|-----------------|--------------------|------| | | CWD - TO | C Remova | l Performan | nce Summ | ary | | | | | | | | | | | | | | DAF Train
#1 | | DAF Train
#2 | | Post-
Ozone
Train #1 | | Post-
Ozone
Train #2 | | In/Out | Pretreatment | Filter | | | | | | Percent | Percent | Percent | | | | | | removal | | removal | Post Ozone | removal | Post Ozone | removal | | Removal | Removal | Removal | | | | | b. DAF | efficiency | c. DAF | efficiency | d. Filter Influent | efficiency | e. Filter Influent | efficiency | f. Finished | Efficiency | Efficiency | Efficiency | Alum | | Date | a. Raw | Train 1 | 1-b/a*100 | Train 2 | 1-c/a*100 | Train 1 | 1-d/b*100 | Train 2 | 1-e/c*100 | Water | 1-f/a*100 | ((b+d)+(c+e))/2 | (in/out -pretreat) | dose | | | mg/L | mg/L | % | % | % | mg/L | | 12/8/2008 | 4.35 | 2.19 | 50 | 2.11 | 52 | 2.34 | -6.8 | 2.25 | -6.8 | 1.76 | 60 | 44 | 15.8 | 32 | | 1/7/2009 | 4.11 | 2.04 | 50 | 2.02 | 51 | 2.06 | -1.2 | 2.01 | 0.7 | 1.65 | 60 | 50 | 9.4 | 34 | | 2/2/2009 | 4.14 | 2.09 | 50 | 2.03 | 51 | 2.02 | 3.2 | 2.07 | -1.8 | 1.63 | 61 | 51 | 9.7 | 33 | | 3/2/2009 | 3.97 | 2.27 | 43 | 2.11 | 47 | 2.03 | 10.4 | 2.05 | 2.8 | 1.75 | 56 | 51 | 4.6 | 25 | | 4/7/2009 | 3.52 | 1.78 | 49 | 1.79 | 49 | 1.76 | 1.0 | 1.79 | -0.2 | 1.45 | 59 | 50 | 9.0 | 26 | | 5/7/2009 | 3.65 | 1.90 | 48 | 1.84 | 50 | 1.75 | 8.2 | 1.52 | 17.5 | 1.56 | 57 | 62 | -4.3 | 26 | | 6/1/2009 | 3.69 | 1.97 | 47 | 1.98 | 46 | 1.94 | 1.4 | 1.91 | 3.5 | 1.63 | 56 | 49 | 6.8 | 33 | | 6/29/2009 | 3.54 | 1.82 | 48 | 1.88 | 47 | 1.70 | 7.0 | 1.73 | 8.0 | 1.49 | 58 | 55 | 2.7 | 30 | | 7/31/2009 | 3.77 | 1.81 | 52 | 1.80 | 52 | 1.69 | 6.7 | 1.69 | 5.9 | 1.41 | 63 | 58 | 4.3 | 27 | | 9/1/2009 | 3.80 | 1.81 | 52 | 2.01 | 47 | 1.56 | 13.8 | 1.50 | 25.4 | 1.36 | 64 | 69 | -5.1 | 32 | | 9/29/2009 | 3.91 | 2.09 | 47 | 1.99 | 49 | 1.91 | 8.6 | 1.81 | 9.0 | 1.61 | 59 | 57 | 2.2 | 29 | | 10/19/2009 | 3.87 | 2.22 | 43 | 2.08 | 46 | 2.15 | 3.2 | 1.79 | 13.9 | 1.58 | 59 | 53 | 6.2 | 32 | | 11/30/2009 | 4.03 | 1.96 | 51 | 1.83 | 55 | 1.92 | 2.0 | 1.82 | 0.55 | 1.51 | 63 | 54 | 8.3 | 30 | | 12/31/2009 | 4.04 | 2.21 | 45 | 2.06 | 49 | 2.00 | 9.5 | 2.09 | -1.5 | 1.62 | 60 | 51 | 8.7 | 31 | | Average | 3.9 | 2.0 | 48.2 | 2.0 | 49.3 | 1.9 | 4.8 | 1.9 | 5.5 | 1.6 | 59.5 | 53.9 | 5.6 | 30.0 | | | | | | | | | | | | | | | | | | Units: Milligra | | | | | | | | | | | | | | | | Percentages | | - | | | | | | | | | | | | | | FOC samples | s a grab sa | mples take | n accross the | e plant at a | single time a | and not a single o | cohort of wa | ter | | | | | | | # Cambridge Water Department Laboratory | Massachus | setts Certificati | on Number | IVI-IVIA149 | | | | | | |-----------|-------------------|--|--|-----------------------------------|--|---|-------------------------------|------------------------------------| | | | Monthly
Average
Chlorine
Residual
(mg/L) | Monthly
minimum
Chlorine
Residual
(mg/L) | Samples
tested for
Coliform | Total
samples
Coliform
positive | Percent
Total
samples
Coliform
positive | Fecal
Coliform
positive | Public
Notification
required | | 2008 | December | 2.30 | 1.84 | 100 | 0 | 0 | 0 | no | | 2009 | January | 2.01 | 1.77 | 100 | 0 | 0 | 0 | no | | | February | 2.09 | 1.94 | 100 | 0 | 0 | 0 | no | | | March | 2.08 | 1.93 | 100 | 0 | 0 | 0 | no | | | April | 2.06 | 1.89 | 100 | 0 | 0 | 0 | no | | | May | 2.05 | 1.86 | 100 | 0 | 0 | 0 | no | | | June | 2.21 | 1.93 | 100 | 0 | 0 | 0 | no | | | July | 2.15 | 1.88 | 100 | 0 | 0 | 0 | no | | | August | 2.02 | 1.48 | 100 | 0 | 0 | 0 | no | | | September | 2.27 | 1.80 | 100 | 0 | 0 | 0 | no | | | October | 2.30 | 1.78 | 100 | 0 | 0 | 0 | no | | | November | 2.07 | 1.68 | 100 | 0 | 0 | 0 | no | | | December | 2.00 | 1.60 | 100 | 0 | 0 | 0 | no | Plant Discharge Permits Massachusetts Water Resource Authority (MWRA) Toxic Reduction And Control (TRAC) program regulates discharge to the sewer system. The TRAC program classifies CWD as a Significant Industrial User (SIU) and has three permits for discharge: 0101 Residuals, 0102 Laboratory, and 0103 Truck Wash. The EPA regulates discharge of clarified backwash water to Fresh Pond under the National Pollution Discharge Elimination System (NPDES) Act | | | Monthly
Residuals - | Monthly
Residuals - | Semi-annual
Lab Waste - | Semi-annual
Lab Waste - | Semi-annual
Truck Wash - | Semi annual
Truck Wash - | Quarterly | |--------------------------|------------------|------------------------|------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------| | | | 0101 | 0101 | 0102 | 0102 | 0103 | 0103 | NPDES | | | Daily Maximum | | | | | | | 3rd QTR | | Parameter | Limit - mg/L | 11/02/09 | 12/14/09 | 01/06/09 | 7/06/09 | 01/06/09 | 07/06/09 | 2009 | | Aluminum (NPDES) | Report Max. # | NR | NR | NR | NR | NR | NR | 1.26 | | Cadmium | 0.1 | < 0.002 | < 0.002 | NR | NR | < 0.005 | < 0.005 | NR | | Copper | 1.5 | 0.27 | 0.20 | < 0.010 | < 0.010 | 0.022 | 0.028 | NR | | Chromium | 1 | 0.055 | 0.029 | NR | NR | < 0.01 | <0.01 | NR | | Lead | 0.2 | 0.025 | 0.018 | <0.01 | 10 | 0.027 | 0.013 | NR | | Nickel | 1 | 0.064 | 0.046 | < 0.025 | < 0.025 | < 0.025 | < 0.025 | NR | | Silver | 2 | < 0.002 | < 0.002 | NR | NR | NR | NR | NR | | Zinc | 1 | 0.16 | 0.16 | NR | NR | 0.228 | 0.434 | NR | | Arsenic | 0.5 | 0.052 | 0.016 | NR | NR | NR | NR | NR | | Selenium | 5 | 0.031 | 0.027 | NR | NR | NR | NR | NR | | Antimony | 10 | < 0.003 | < 0.003 | NR | NR | NR | NR | NR | | Mercury | Prohibited | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | < 0.0002 | NR | | Total Residual Chlorine | Report Max. | NR | NR | NR | NR | NR | NR | 0.035 | | Total Suspended Solids | <=3% | 0.58% | 0.48% | NR | NR | NR | NR | NR | | TSS (NPDES) | 50 (max) | NR | NR | NR | NR | NR | NR | 10 | | PH (NPDES) | 8.5 (max) | NR | NR | NR | NR | NR | NR | 6.37 | | pН | 5.5 - 10.5 | 6.40 | 6.0 | 7.17 | 7.56 | 7.35 | 7.66 | NR | | Cyanide | 0.5 | NR | NR | < 0.005 | < 0.005 | NR | NR | NR | | Total Fats, Oil & Grease | <= 300 | NR | NR | NR | NR | 4.9 | 18 | NR | | | 1.0 MGD NPDES | | | | | | | | | Flow - Gallons/Day | Reg. | 66,975 | 32,490 | 232 | 32.5 | 50 | 50 | 0.56 MG | | | Any analyte not | | | | | | | | | TTO (VOC) | to exceed 1 mg/L | NR | NR | NR | NR | All < 1mg/L | AII < 1 mg/L | NR | | | Any analyte not | | | | | | | | | TTO (ABN) | to exceed 1 mg/L | NR | NR | NR | NR | All < 1mg/L | All < 1mg/L | NR | NR= Not Required | ı | | COMPADICA | ON OF CAMPD | DOE TAD WATER | | | | |--|-------------------|--|---|---|-------------------|--|---| | | | | | DGE TAP WATER | | | | | PARAMETER | Cambridge
mg/L | Primary (Health Related) Maximum Contaminant Level(MCL) mg/L | Secondary
(Aesthetic
Related) MCL
mg/L | PARAMETER | Cambridge
mg/L | Primary (Health Related) Maximum Contaminant Level(MCL) mg/L | Secondary
(Aesthetic
Related) MCI
mg/L | | Alkalinity (as | | | | | | | | | CaCO ₃) | 32 | | | Magnesium | 4.23 | | | | Aluminum | 0.021 | | 0.05-0.2 | UV254 A/cm | 0.028 | | | | Arsenic | <0.0005 | 0.05 | | Manganese | 0.006 | | 0.05 | | Barium | 0.037 | 2 | | Mercury | <0.0001 | 0.002 | | | | | | | Nitrate (as | | | | | Cadmium | <0.0005 | 0.005 | | Nitrogen) | 0.327 | | | | Calcium | 21.04 | | | | | | | | Chloride | 133.7 | | 250 | pН | 8.83 | | | | Chlorine, Free | 0.01 | 4.0 MRDL+ | | Selenium | < 0.0005 | 0.05 | | | Chlorine, Total | 2.1 | 4.0 MRDL+ | | Silver | <0.00015 | | 0.1 | | Chromium | 0.001 | 0.1 | | Sodium | 76.9 | | | | Color | 1 | | 15 color units | Specific
Conductance,
umhos/cm @25C | 553 | | | | Copper | 0.002 | 1.3 | | Standard Plate
Count | 0 | 500 C.F.U./1ml * | 250 | | Dissolved Solids, | | | | | | | | | Total | 304 | | 500 | Sulfate | 25.23 | | | | Fluoride | 1.10 | 4 | | Total Coliform | 0 | 0 C.F.U./100ml | | | Hardness (as | | | | Total Haloacetic | | 60 ug/L (four | | | CaCO3) | 53 | | | acids | 4.9 | quarter avg.) | | | Iron | 0.03 | | 0.3 | Total
Trihalomethanes | 7.3 | 80 ug/L (four quarter avg.) | | | Saturation Index (SI) | -0.19 | | | Turbidity | 0.044 | 0.5 N.T.U
filtered, 1.0 | 5 | | Lead | 0 | 0.015 | | Zinc | <0.001 | | | | + MRDL = Maximur
Hardness in grains | | | | * C.F.U./1ML = Colo
CWD FINISHED WA | | | | | NA = Not Analyzed | , | | | Analyzed by Cambi | | | |